Physik für Pharmazeuten

Sommer-Semester 2008

Prof. Dr. Lutz Schweikhard
Institut für Physik
Ernst-Moritz-Arndt-Universität Greifswald

Tel. (Sekr.) 03834-86-4700

http://www6.physik.uni-greifswald.de/

⇒,,teaching" => http://www6.physik.uni-greifswald.de/lectures.html
=> ...

09. April 2008 Einführung

Vorlesung

im Sommer-Semester 2008
mittwochs 10 bis 12 (wann genau?)
sowie donnerstags 9 bis 11 (wann genau?)
(4 SWS, aber nicht alle Wochen!)

Abschluss mit Eingangstestat
Multiple Choice-Test analog zum
"Ersten Abschnitt der Pharmazeutischen Prüfung"
in der letzten Vorlesungswoche
für das

Praktikum

im Winter-Semester 2008/09

Abschluss mit einer schriftlichen Prüfung über den Stoff von Vorlesung und Praktikum am Ende des Winter-Semesters (Zugangsvoraussetzung: Bestehen des Praktikums!)

Literatur 1

Haas: "Physik für Pharmazeuten und Mediziner", Wissensch. Verlagsges., Stuttgart, 6. Aufl., 2002

Trautwein/Kreibig/Oberhausen: "Physik für Mediziner", deGruyter, Berlin

Kamke/Walcher: "Physik für Mediziner", Teubner, Stuttgart

Harten: "Physik für Mediziner", Springer-Verlag

Jahrreiß/Neuwirth: "Einführung in die Physik", Deutscher Ärzte-Verlag

Seibt: "Physik für Mediziner", Chapmann & Hall

Hellenthal: "Physik für Mediziner und Biologen", Wissensch. Verlagsges., Stuttgart

Fercher: "Medizinische Physik", Springer-Verlag

Schulbücher, Schülerduden, "Tafelwerk", dtv-Atlas Physik Bd. 1&2, ...

Lexika, www.wikipedia.de, Google.de, ...

Bücher "für Bachelor- und Nebenfachstudium", z.B. Halliday Physik, Bachelor Ed., 2007

Barth/Ziegengeist: "Physik. Kurzlehrbuch und Prüfungsfragen für Pharmazeuten" 8. Aufl., 2005

Schatz/Tammer: "Erste Hilfe – Chemie und Physik" (für Mediziner) Springer, 2007

Ulrich Haas: "Physik für Pharmazeuten und Mediziner", Wissensch. Verlagsges., Stuttgart, 6. Aufl., 2002 ISBN-10: 380471823X, ISBN-13: 978-3804718234 54,- €

Im Paket mit CD "Pharma-Trainer" (gibt es nicht einzeln!) 59,- €

Insgesamt angelehnt an die

Gegenstandskataloge (gkg) für den Ersten Abschnitt der Pharmazeutischen Prüfung bzw. für die Ärztliche Vorprüfung (http://www.impp.de/index.php?id=11)

Bitte **Einleitung** und **Grundlagen der Physik**, [...] anschauen! (für Pharmazeuten: S. 45-63, http://www.impp.de/pdf/gkp.pdf)

Wird herausgegeben vom IMPP (<u>www.impp.de</u>), Institut für Medizinische und Pharmazeutische Prüfungsfragen.

Für Pharmazeuten: Eine kostenlose CD mit Aufgaben/Lösungen der letzten Jahre gibt es auch von ratiopharm. (Fachschaft fragen!)

aus Einführung des gkg ... pharm. Prüf. 1

Für das Erfassen naturwissenschaftlich-technischer Zusammenhänge sind einige mathematische Kenntnisse und Fertigkeiten im Umgang mit einfachen Formeln erforderlich. Aus der Mathematik-Ausbildung in der Sekundarstufe sollten sie in der Regel bei Studienaufnahme vorhanden sein; ...

A Allgemeine Grundlagen und elementare Funktionen

- 1. Grundrechnungsarten, Bruchrechnung und Potenzrechnung
- 2. Einfache Funktionen und deren graphische Darstellung: Potenzfunktion (auch Wurzelfunktion), Winkelfunktion, Exponentialfunktion
- 3. Dekadischer und natürlicher Logarithmus
- 4. Anwendung linearer und logarithmischer Darstellung (lin. und log. Koordinaten)

B Vektoren

- 1. Addition und Komponentenzerlegung von Vektoren (graphisch)
- 2. Skalarprodukt (Prinzip)
- 3. Vektorprodukt

C Differentialrechnung

- 1. Geometrische Bedeutung des Differentialquotienten
- 2. Differentiation der unter A 2. genannten Funktionen

D Integralrechnung

- 1. Geometrische Bedeutung des Integrals
- 2. Integration als Umkehrung der Differentiation (Prinzip)

Mathematik

"Ohne Mathematik lassen sich die Naturwissenschaften weder verstehen noch erklären, weder lehren noch erlernen." Roger Bacon, ca. 1214 - 1292

"Keine menschliche Forschung kann man wahre Wissenschaft heißen, wenn sie ihren Weg nicht durch die mathematische Darlegung und Beweisführung hin nimmt. Sagst du, die Wissenschaften, die von Anfang bis zum Ende im Geiste bleiben, hätten Wahrheit, so wird dies nicht zugestanden, sondern verneint aus vielen Gründen, und vornehmlich deshalb, weil bei solchem reingeistigen Abhandeln die Erfahrung (oder das Experiment) nicht vorkommt; ohne dies aber gibt sich kein Ding mit Sicherheit zu erkennen."

Leonardo da Vinci, 1452 - 1519

"Das Buch der Natur ist in der Sprache der Mathematik geschrieben." *Galileo Galilei*, 1564 - 1642

Mathematik-Bücher

"Das Buch der Natur ist in der Sprache der Mathematik geschrieben." Galileo Galilei (erster "Experimentalphysiker", 1564 – 1642)

=> Wiederhole (oder lerne endlich ;-) Mathe! (Vieles ist "nur" Rechnen!)

Werner Poguntke
Keine Angst vor Mathe, Hochschulmathematik für Einsteiger
2. Aufl., 2006, Teubner

bzw. viele weitere Titel:

"Mathematik-Vorkurs", "Mathematischer Vorkurs", "Brückenkurs Mathematik", "Starthilfe Mathematik", …

Kurzfassungen oft in Anhängen von Physikbüchern!

Schulbücher, Schülerduden, "Tafelwerk", ... Lexika, www.wikipedia.de, Google.de, ...

aus Einführung des gkg ... pharm. Prüf. 2

Im allgemeinen werden Zahlenwerte von Konstanten in den Prüfungsaufgaben mit der für die Rechnung erforderlichen Genauigkeit angegeben, einige sollten aber bekannt sein (Allgemeinwissen für einen Naturwissenschaftler). Sie sind in der folgenden Liste zusammengestellt. Soweit im Aufgabentext nicht ausdrücklich anders angegeben, ist die Genauigkeit dieser gerundeten Werte hinreichend:

A Reine Zahlenwerte

B Physikalische Größen

Fallbeschleunigung g	~	9,81 <i>m</i> ⋅ s ⁻²
zur Abschätzung reicht hier:	\approx	10 <i>m</i> ⋅ s ⁻²
Dichte des Wassers	\approx	1 g · cm⁻³
Absoluter Nullpunkt	=	0 K ≈ -273 °C
 Schmelzenthalpie von Wasser 	\approx	330 <i>J</i> ⋅ <i>g</i> ⁻¹
Verdampfungsenthalpie von Wasser	\approx	2200 $J \cdot g^{-1}$
Allgemeine Gaskonstante R	~	$8,3 \ J \cdot K^{-1} \cdot mol^{-1}$

6. Allgemeine Gaskonstante R
$$\approx 8,3 J \cdot K^{-1} \cdot mol^{-1}$$

7. Elementarladung $\approx 1,6 \cdot 10^{-19} C$
8. Faraday-Konstante F $\approx 96500 C \cdot mol^{-1}$
9. Lichtgeschwindigkeit im Vakuum $\approx 3 \cdot 10^8 m \cdot s^{-1}$

9. Lichtgeschwindigkeit im Vakuum $\approx 3 \cdot 10^8 \ m \cdot s^{-1}$ 10. Avogadro-Konstante N_A $\approx 6 \cdot 10^{23} \ mol^{-1}$ 11. Molvolumen V_m $\approx 22, 4 \ l \cdot mol^{-1}$

$$\pi$$
 \approx 3,14
 π^2 \approx 10
e \approx 2,7
1/e \approx 0,37
 $\sqrt{2}$ \approx 1,4

$$\sin 0 - \cos 90^{\circ} - 0$$

 $\sin 90^{\circ} = \cos 0 = 1$
 $\sin 30^{\circ} = \cos 60^{\circ} = 0,5$
 $\tan 45^{\circ} = 1$

Aus "Pythagoras" folgt weiter sofort

$$\sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}}$$

Beachte: Einheiten

schreiben

besser nicht kursiv

und $\sin 60^{\circ} = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$

Beachte Redundanzen, wie z.B. hier $F = N_A \cdot e$

Lernmaterialien allgemein

"Nobody is perfect"

```
Das gilt für
die mündliche Rede,
an der Tafel Skizziertes,
elektronische Präsentationenn ;-),
Skripte, Bücher, ...
```

Daher: Nicht alles glauben!

Dazu kommt:

Es gibt unterschiedliche Voraussetzungen und verschiedene Lernstile.

Nicht jedes Buch (allg. Lernmaterial) ist für jeden gleich gut geeignet!

Daher: Suche das jeweils Beste am besten selbst!

```
(in der Bibliothek/Buchhandlung, im Internet, bei "höheren Semestern", …)
```

"Nobody is perfect."

Daher: Nicht alles glauben!

Die vorliegende Präsentation beruht auf einer Bearbeitung von Vorlesungsfolien von

Prof. Dr. Andre Melzer (Inst. f. Physik, Univ. Greifswald)

im Rahmen der Medizinerausbildung

Trotzdem bin ich für die Fehler natürlich immer selbst verantwortlich!

Inhalt ohne Gewähr!

Physik, Versuch einer Definition

Physik (griechisch φυσική, physike "die Natürliche") ist die Wissenschaft vom Aufbau und der Bewegung der (unbelebten wie belebten) Materie, den Kräften, die die Bewegung hervorrufen, und den Feldern, die die Kraftwirkungen vermitteln

"Klassische Physik" (bis etwa 1900)

- Mechanik
- Wärmelehre
- Elektrizitätslehre
- Optik

"Moderne Physik":

- Quantenphysik (1900: Max Planck)

Spez./allg. Relativitätstheorie (1905/1915: Albert Einstein)

Plasmaphysik

Astrophysik/Kosmologie

Nichtlineare Systeme

Festkörperphysik

Atomphysik Molekülphysik

Kernphysik

und viele mehr...

(grobe) Übersicht

- Einleitung
- Mechanik
 - "Punktmechanik", starrer Körper
 - Mechanik der Kontinua (Flüssigkeiten, Gase)
- Schwingungen und Wellen (Akustik)
- Wärmelehre (Thermodynamik)
- Elektrizität und Magnetismus
- Optik
- Atom- und Kernphysik

Beachte:

- Die Übergänge sind oft fließend.

Beispiel: Schwingungen und Wellen kommen in der Akustik und bei "Elektrizität und Magnetismus" vor.

- Bei Erklärungen der Phänomene wird zwischen klassischer (makroskopischer) und mikroskopischer Beschreibung hin- und hergesprungen.

Warum Physik für "Nicht-Physiker"?

Am Beispiel der Medizin

Die Medizin

war zu jeder Zeit eng verbunden mit

physikalischen, chemischen und biologischen,

naturwissenschaftlichen Erscheinungen

Teil der allgemeinen **Lehre von der Natur.** Siehe z.B. im 19. Jhdt.:

H. v. Helmholtz	1821-1894	Augenspiegel		
R. Mayer	1814-1878	Energiesatz		
J.L.M. Poiseuille	1799-1869	Blutströmung	von Helmholtz	
J.W. v. Goethe	1749-1832	anatomische und physikalische/(sinnes-) physiologische Studien (Farbenlehre)		

Warum Physik für "Nicht-Physiker"?

Insb. ab Mitte des 19. Jhdt. zunehmend Verzicht auf die Beschreibung des Lebenden (d.h. der speziellen Phänomene des Lebens; die Anwendbarkeit auf Lebewesen bleibt dabei erhalten!)

Vereinfachung bei der Beschreibung von Naturvorgängen

gleichzeitig Übergang von einer phänomenologischen (qualitativen: groß/klein; komperativen: größer/kleiner) zur quantitativen Beschreibung (3,5 km; 5,2 mm)

Spezialisierung (in Mechanik, Wärmelehre, Elektrizitätslehre, Optik, ...)

Aber:

Die Unterschiede zwischen den einzelnen Naturwissenschaften einschließlich der Medizin existieren nur im **Makroskopischen** und verschwinden im **Mikroskopischen**

Anwendungsbeispiele

Wieder am Beispiel der Medizin

Diagnostik- und Therapieverfahren

- Ultraschall
- Thermographie
- EKG, EEG, EMG, ERG, MEG, MKG,...
- Diathermie
- Elektroreizung
- Elektrophorese
- Mikroskopierverfahren
- Laserchirurgie
- Röntgentherapie, -diagnostik, -strukturanalyse
- Computertomographie
- Kernspintomographie (Nobelpreis 2003, "Magnetic Resonance Imaging")
- radioaktive "Tracer"(-Isotope)
- Positronen-Emissions-Tomographie

• ...

Physikalische Arbeitsmethoden

Induktive Methode:

von Einzelerscheinungen zum allgemeinen Gesetz (Vollst. Induktion nur in der Mathematik; in Naturwiss. keine "Beweise" Experimente führen zu Falsifikation oder Bestätigung, keine Verifikation.)

Deduktive Methode:

vom allgemeinen Gesetz oder Axiom zu den Einzelerscheinungen

Induktive Methode:

Beobachtung_eines Vorgangs

Experiment zur qualitativen und quantitativen Untersuchung des Vorgangs

Modell zur Beschreibung des Vorgangs (und evtl. weiterer)

Gesetz (Verallgemeinerung auf ähnliche Fälle)

1.1 aus gkg ... pharm. Prüf.

Kapitel: Grundlagen der Physik, der physikalischen Chemie und der Arzneiformenlehre

1 Allgemeines

- 1.1 Physikalische Größen und Einheiten
- 1.1.1 Physikalische Größen: Darstellung mittels Einheit und Maßzahl
- 1.1.2 Einheiten: Kenntnis der 7 Basisgrößen und Basiseinheiten des SI (Système International d'Unités); abgeleitete Einheiten: Zusammenhang mit den Basiseinheiten über die Definitions-Größengleichung der abgeleiteten Größe; in Literatur und Praxis verbreitete Einheiten aus anderen Maßsystemen, z.B.: °C, eV, bar, cal
- **1.1.3 Vielfache und Bruchteile von Einheiten:** Vorsätze für dezimale Teile und Vielfache
- 1.1.4 Skalare und vektorielle Größen: Unterscheidung; Einordnung der von dieser Prüfungsstoffsammlung abgedeckten physikalischen Größen

Physikalische (Basis-)Größen

Physikalische Größe a ist Produkt aus Zahlenwert {a} und der Einheit [a].

$$a = \{a\} \cdot [a]$$

Beispiel: I = 35 km, also $\{a\} = 35$ und [a] =km

Einheit Meter (m)

physik. Größe Länge (I)

Symbol *kursiv* Zahlenwert: 35

Vorsatz k

SI-System:

Basisgröße	Einheit	Symbol	Vorsatz	Symbol	Faktor
Länge	Meter	m	nano	n	10 ⁻⁹ =1/1.000.000.000
Zeit	Sekunde	S	mikro	μ	10 ⁻⁶ =1/1.000.000
Masse	Kilogramm	kg	milli	m	10 ⁻³ =1/1000
Temperatur	Kelvin	K	centi	С	10 ⁻² =1/100
Stromstärke	Ampere	Α	hekto	h	10 ² =100
Stoffmenge	Mol	mol	kilo	k	10 ³ =1000
Lichtstärke	Candela	cd	mega	M	10 ⁶ =1.000.000
			giga	G	109=1.000.000.000

Griechisches Alphabet

"Hausaufgaben":

- Wie heißen die Vorsätze für noch größere und noch kleinere Zehnerpotenzen?
- Wie heißen und wie schreibt man die Buchstaben des griechischen Alphabets?

Griechis	ches Alphal	oet
Name	Zeichen	Name

Name	Zeichen	Name	Zeichen	Name	Zeichen
Alpha	Α, α	Iota	Ι, ι	Rho	P, <i>Q</i>
Beta	Β, β	Kappa	K,κ	Sigma	Σ , σ
Gamma	Γ, γ	Lambda	Λ, λ	Tau	Τ, τ
Delta	Δ , δ	My	M, μ	Ypsilon	Υ , v
Epsilon	E, ε	Ny	N, <i>v</i>	Phi	Φ , φ
Zeta	Z, ζ	Xi	$\Xi, oldsymbol{\xi}$	Chi	Χ, χ
Eta	H, η	Omikron	O, <i>o</i>	Psi	Ψ , ψ
Theta	Θ , ϑ	Pi	Π, π	Omega	Ω , ω

Zusammengesetzte Größen

Beispiele von (aus Basisgrößen) zusammengesetzte Größen:

Geschwindigkeit: Weg (besser Orständerung) pro Zeit

Ableitung der Ortsfunktion nach der Zeit

Beachte: Im Allg. sind Ort und damit auch

Geschwindigkeit Vektoren.

Unterscheide: Geschwindigkeit (velocity)

und Bahngeschwindigkeit (speed)

Beschleunigung: Geschwindigkeitsänderung pro Zeit

Siehe Bemerkungen bei Geschwindigkeit

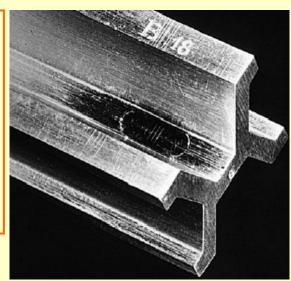
Impuls: Masse mal Geschwindigkeit

Kraft: Masse mal Beschleunigung

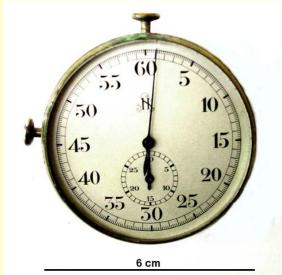
Ableitung des Impulses nach der Zeit

Arbeit: Kraft mal "Weg"

Beachte: Kraft und Ortsänderung sind Vektoren, daher Skalarprodukt;

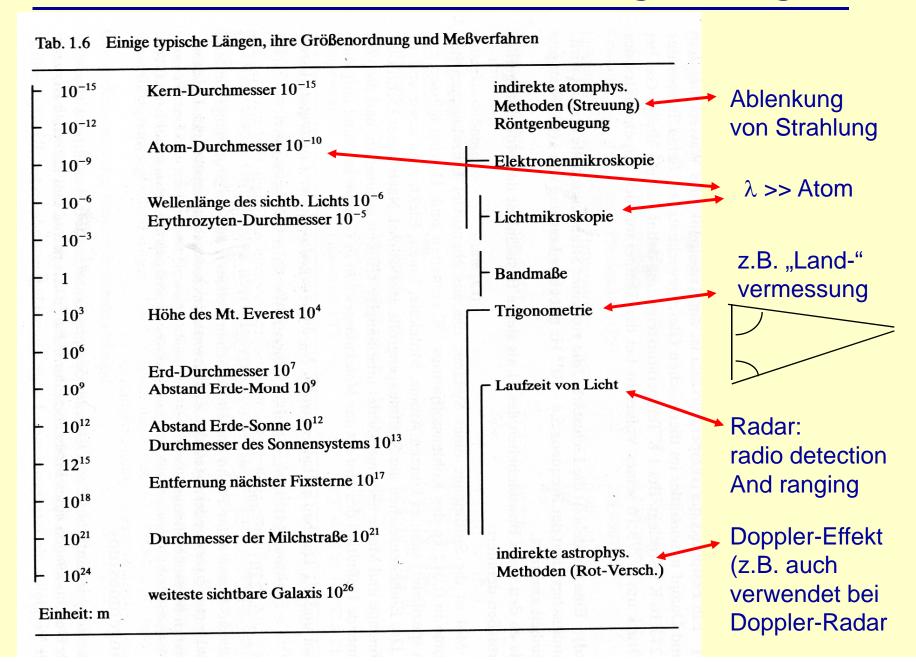

und bei veränderlicher Kraft muss integriert werden.

Definition Meter und Sekunde

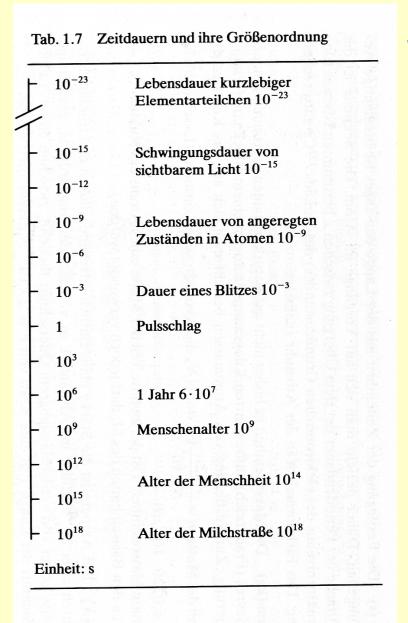

Die Lichtgeschwindigkeit im Vakuum ist eine zentrale Größe. Sie hat *per definition* den **exakten** Wert c = 299792458 m/s.

Der Meter

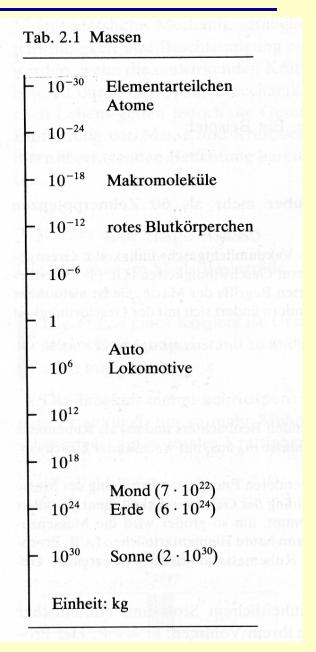
(DAS Meter ist ein Messgerät, z.B. das Barometer, das Amperemeter, ...) ist definiert über die Sekunde und *c* als die Strecke, die Licht im Vakuum in 1/299.792.458 Sekunden zurücklegt.



Alte Definition: Das Urmeter in Paris



Eine Sekunde ist das 9.192.631.770-fache der Periodendauer der von Atomen des Nuklids ¹³³Cs ausgesandten Strahlung beim Übergang zwischen den beiden Hyperfeinstrukturniveaus des Grundzustandes.


Größenordnungen Längen

Größenordnungen Zeiten und Massen

Massen

Am Beispiel des Fallgesetzes:

Größengleichungen:

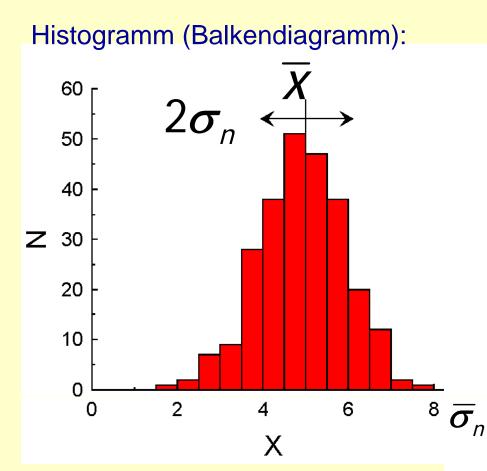
$$s = \frac{1}{2}gt^2$$

 $s = \frac{1}{2}gt^2$ in der Nähe der Erdoberfläche g = Beschleunigung fallender Körper (ca. 10 m/s 2 , "9,81 m/s 2 ")

Zahlenwertgleichungen:

$$s = 4,905 \cdot t^2$$

Vorsicht!!! Nur gültig bei Verwendung bestimmter Einheiten, hier: t in Sekunden und s in Metern


- Dieser Gleichungstyp wird in der Physik möglichst vermieden.
- Zahlenwertgleichungen können bei Bedarf mithilfe der entsprechenden Konstanten aus den Größengleichungen leicht abgeleitet werden.

Messunsicherheiten/"Fehlerrechnung"

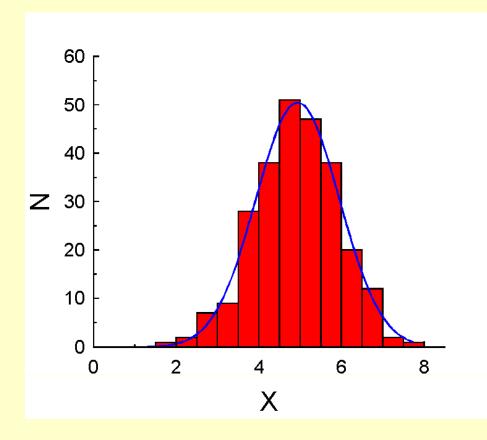
(Grober Fehler: z.B. Verletzung der Meßvorschriften)

Messunsieherheiten ergeben sieh durch

- Messunsicherheiten ergeben sich durch
- Systematische Abweichungen: treten immer in bestimmter Richtung auf
- zufällige Abweichungen: Richtung und Betrag statistisch verteilt

Mittelwert

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$


Standardabweichung

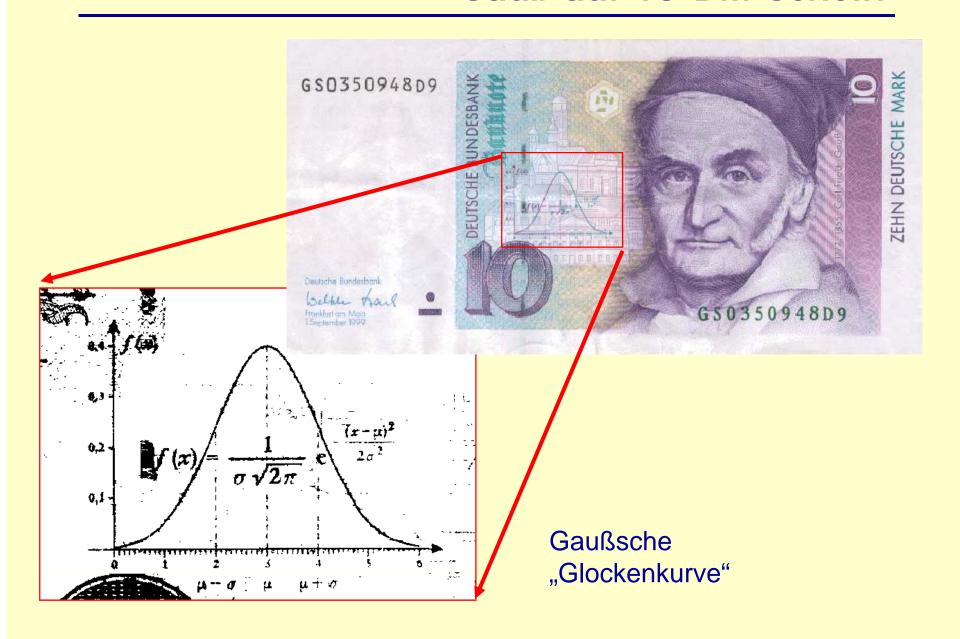
$$\sigma_n = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x})^2}$$

Standardabweichung des Mittelwerts

⁸
$$\overline{\sigma}_n = \sqrt{\frac{1}{n(n-1)}\sum_{i=1}^n (x_i - \overline{x})^2} = \frac{\sigma_n}{\sqrt{n}}$$

Gauß-Verteilung

Die Definitionen der vorhergehenden Folie sind insb. sinnvoll bei der häufig auftretenden Gaußverteilung


$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\overline{x})^2}{2\sigma^2}\right)$$

Siehe auch die Formel auf den alten Zehn-Mark-Scheinen!

$$\begin{bmatrix} \overline{x} - 1\sigma, \overline{x} + 1\sigma \end{bmatrix} \longrightarrow \text{ca. 68 \% statistische Sicherheit}$$

$$\begin{bmatrix} \overline{x} - 1.96\sigma, \overline{x} + 1.96\sigma \end{bmatrix} \longrightarrow \text{ca. 95 \% statistische Sicherheit}$$

Gauß auf 10-DM-Schein

"Fehlerfortpflanzung"

Auch wenn dies oft übergangen wird (auch in dieser Vorlesung): Jede Messgröße hat eine Messunsicherheit, oft angegeben mit einem "Sigma-Wert". Wenn nun mehrere Messgrößen zu einem neuen Wert kombiniert werden, stellt sich die Frage nach der Unsicherheit des Kombinationswertes. Bei Gauß-Verteilungen gilt:

zu bestimmende Größe

$$Z = f(X_1, X_2, \ldots X_k)$$

mit Unsicherheiten $\sigma_1, ..., \sigma_k$ der Eingangsgrößen $x_1, ..., x_k$

$$f(X_1 \pm \sigma_1, X_2 \pm \sigma_2, \dots X_k \pm \sigma_k)$$

Unsicherheit der zu bestimmenden Größe

$$\sigma_{z} = \sqrt{\left(\frac{\partial f}{\partial x_{1}}\right)^{2} \sigma_{1}^{2} + \left(\frac{\partial f}{\partial x_{2}}\right)^{2} \sigma_{2}^{2} + \dots + \left(\frac{\partial f}{\partial x_{k}}\right)^{2} \sigma_{k}^{2}}$$

Gaußsches "Fehlerfortpflanzungsgesetz"

1.2 Physikalische Messungen

(wird insb. im Physikalischen Praktikum behandelt)

- 1.2.1 Graphische Darstellungen: Anfertigung, Gebrauch und Auswertung graphischer Darstellungen; Anwendung linearer und Iogarithmischer Skalen
- **1.2.2 Unsicherheiten, Fehler:** Unsicherheiten von Messungen, systematische Fehler, zufällige Fehler, Unsicherheiten bei Zählungen statistischer Ereignisse (s.a. PhAna 1.2.2)
- 1.2.3 Auswertung unter Berücksichtigung von Unsicherheiten:
 Graphische Darstellung mit Unsicherheitsbalken; absolute und relative Unsicherheiten (Fehler); Bestimmung der maximalen Unsicherheit einer aus mehreren Messgrößen zusammengesetzten Größe aus den einzelnen Messfehlern; arithmetischer Mittelwert bei Messreihen
- 1.2.4 Messgeräte und ihr Gebrauch: Gebrauch von Maßstäben, Messschiebern (Schieblehren), Uhren, Zählern, Thermometern, Manometern, Messgeräten für elektrische Stromstärke und Spannung, Oszilloskopen; Messunsicherheit bei digital anzeigenden Messgeräten